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Abstract. The field of differential algebraic geometry is created by ex-
panding algebraic geometry to include algebraic differential equations and
their arithmetic analogs. In particular, there are four classes of operators
that can be used to “enlarge usual algebraic geometry” by “adjoining” an
operator δ [3]. When the adjoined operator is an arithmetic difference oper-
ator, arithmetic difference geometry is the result. Much of the basic theory
of arithmetic difference operators parallels the theory that occurs when the
operator is an arithmetic analog of a derivation called a p-derivation. In
this paper we detail the basic theory of arithmetic difference operators not-
ing the many parallels to and some differences from the theory in the case
of p-derivations.

1. Introduction

In [3], A. Buium describes four classes of operators that may be used to
“enlarge usual algebraic geometry”. Two of these operators are ideally suited
for arithmetic purposes, specifically p-derivations, an arithmetic analog of a
derivation, and π-difference operators, an arithmetic difference operator that
in fact lies morally somewhere between a usual derivation and a p-derivation.
Previously not much has been written about π-difference operators. While the
existence of a geometry arising from the adjoining of a π-difference operators
is discussed in [4] and [3], no details of the basic theory in the case of π-
difference operators are given. In what follows we give an introduction to the
basic theory of the geometry that arises from adjoining a π-difference operator
along the same lines as found in [5] and [2] for the case when the adjoined
operator is a p-derivation.

Unsurprisingly much of the geometry in the case when π-difference operator
is adjoined is very similar to the case when the adjoined operator is a p-
derivation. Both the construction of π-jet spaces and the definitions of δ-
formal functions and δ-characters are analogous in the case of π-difference
operators to the case of p-derivations. What is remarkable is the fact that for
π-difference operators, the group of δ-characters for an abelian group scheme
G is a finitely generated torsion free R-module.
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In what follows we first introduce π-difference operators and then detail the
construction of π-jet spaces using π-difference operators. This construction is
central for the geometries arising from adjoining not just π-difference opera-
tors, but also p-derivations and usual derivations. After the construction of
π-jet spaces, we discuss δ-formal functions and δ-characters. Finally we use
p-difference operators to provide a quantitative bound for #(X(R) ∩ J(R)tors

where X/R is a smooth projective curve of genus g ≥ 2 and J/R is the Ja-
cobian of X. This was done quite successfully using p-derivations. While it
is also possible to provide a quantitative bound using π-difference operators,
the results provide a caution that in the future the best applications of π-
difference operators will lie in different areas than the best applications to
date of p-derivations.

Let K be a field of characteristic zero, complete under discrete valuation ν,
with an algebraically closed residue field k of characteristic p > 0. Furthermore
assume K is a finite separable extension of Qp with R the valuation ring of
K and e = ν(p) the absolute ramification index. Fix π ∈ R a prime element.
For R-algebras A and B with f : A → B an R-algebra homomorphsim, a
π-difference operator of f is a map δ : A→ B that satisfies

δ(x+ y) = δx+ δy

δ(xy) = f(y)δx+ f(x)δy + πδxδy

δ(1) = 0

for all x, y ∈ A. Anytime it is clear that f is either the identity or a natural
embedding of A into B we replace f(x) with x.

A simple calculation shows that when A = R, the map θ : R → B defined
by θ(x) = x+ πδ(x) is a ring homomorphism. Furthermore θ is injective, and
if B = R, then θ is an automorphism fixing Zp. Let G0 ⊂ Gal(K/Qp) denote
the subset of Galois automorphisms of K over Qp that operate trivially on k,
namely the first inertia group.

Proposition 1.1. The set of π-difference operators from R to R is in bijective
correspondence with the elements of the first inertia group G0.

Proof. The hardest part of this is to show φ(x) = x + πδ(x) is injective if
δ is a π-difference operator. First realize that δ takes any element in Zp to
zero and therefore φ fixes Zp. Next we note that any non-trivial ideal in R
contains non-zero elements of Zp. Therefore kerφ can’t be a non-trivial ideal.
Surjectivity follows from the fact that φ must take the roots of any irreducible
polynomial f(x) ∈ Zp[x] to the roots of f(x) bijectively. Also it is automatic
that φ operates trivially on k. Finally it is a matter of simple computation to

check that for each element φ ∈ G0, the map δ(x) = φ(x)−x
π

is the corresponding
π-difference operator. �
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From now on fix φ ∈ G0 and let δ be the corresponding π-difference operator
from R to R defined by

δ(x) =
φ(x)− x

π
for all x ∈ R. If φ is the identity element of the inertia group, then δ is the
trivial, namely the zero map.

2. Jet spaces with π-difference operators

In an analogous fashion to the construction of jet spaces found in [5] and
[2] we can construct jet spaces using π-difference operators. Even though the
construction is very similar to the construction of jet spaces using p-derivations,
we provide a complete overview, albeit brief. From now on we will refer to jet
spaces constructed with π-difference operators as π-jet spaces to distinguish
them from jet spaces constructed with derivations or p-derivations.

It will be necessary to use formal schemes in what follows. By a π-formal
scheme we mean a Noetherian formal scheme X/R such that πOX is the ideal
of definition of X. If X/R is a scheme, then we will denote its associated

formal scheme by X̂/R. If S is a π-adically complete ring, we let Spf S be
the formal scheme obtained by completing SpecS along the closed subscheme
defined by the ideal πS. In turn, a π-formal group scheme is a group object
in the category of π-formal schemes. With this convention, if G/R is a group

scheme, then Ĝ/R is the associated π-formal group scheme. For G/R a group
scheme, set G(πR) := ker(G(R) → G0(k)) where G(R) := Hom(SpecR,G)
and G0 = G⊗k. Then the set G(πR) is isomorphic to an g-dimensional formal
group defined over R where g is the dimension of G. We will denote this formal
group by FG. For more details about g-dimensional formal groups see [8].

We begin the construction of π-jet spaces by introducing the following uni-
versality property. Let

R
f,δ→ B

f1,δ→ B1 f2,δ→ B2 → . . .→ Bn−1 fn,δ→ Bn → . . .

be a sequence of R-algebras where each f i is an algebra morphism and each δ
is a π-difference operator of the appropriate f i that extends the π-difference
operator δ : R→ R such that δ ◦ fn−1 = fn ◦ δ with the following universality
property:

Proposition 2.1 (UNIVERSALITY PROPERTY). Let g : Bn−1 → C be any
ring homomorphism of R-algebras and let ∂ be a p-difference operator from
Bn−1 to C of g such that ∂ ◦ fn−1 = g ◦ δ. Then there exists a unique ring
homomorphism u : Bn → C such that g = u ◦ fn and ∂ = u ◦ δ.

By the universality property the sequence

R
f,δ→ B

f1,δ→ B1 f2,δ→ B2 → . . .→ Bn−1 fn,δ→ Bn → . . .
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satisfying the above properties for a given R-algebra B is unique up to iso-
morphism. We shall call such a sequence a π-jet sequence. It is simple to
see that the sequence exists for a given R-algebra as demonstrated by the
following construction. For B = R[T ] where T is a tuple of variables, let
Bn = R[T, T ′, T ′′, . . . , T (n)] where each T (i) is a tuple of variables. In this case
f : R→ B would be the natural inclusion as would fn : Bn−1 → Bn. Extend
φ : R → R to a homomorphism from B to B1 by letting φ(Ti) = Ti + πT ′i
for all Ti in T . Then δ : B → B1 defined by δ(x) = (φ(x) − x)/π is a π-
difference operator of the natural inclusion that extends our fixed δ : R → R
and hence we will use the same letter for both. Inductively the extension of
φ to φ : Bn−1 → Bn is completely defined by the behavior of φ on T (n−1).

We define φ’s behavior to be φ(T
(n−1)
i ) = T

(n−1)
i + πT

(n)
i . Since extending φ is

equivalent to extending δ for δ(x) = (φ(x)− x)/π, this gives us a π-difference
operator δ : Bn−1 → Bn of fn. It is straightforward to check that this sequence
satisfies the properties of a π-jet sequence.

We now consider the more general case of B = R[T ]/I. Here we let
B1 = R[T, T ′]/(I, I ′) where I ′ is the ideal generated by the image of I under δ
under the above maps. We let f : B → B1 be the natural inclusion. In this set-
ting, the extension of δ just constructed is a π-difference operator from B to B1

extending δ : R→ R. More generally we define I(n) to be the ideal generated
by the image of I(n−1) under δ and let Bn = R[T, T ′, . . . , T (n)]/(I, I ′, . . . , I(n))
with fn : Bn−1 → Bn the natural inclusion. Then δ : R[T, T ′, . . . , T (n−1)] →
R[T, T ′, . . . , T (n)] as previously constructed is π-difference operator from Bn−1

to Bn. Once again it is straightforward to check that this more general se-
quence satisfies the property that δ◦fn−1 = fn◦δ and the universality property.

In general these sequences do not behave well with respect to localization.
While (B1)t is a subring of (Bt)

1 for t ∈ B, these algebras are not necessarily
equivalent unless either π is nilpotent or R is π-adically complete. However,
for

R
f,δ→ B

f1,δ→ B1 f2,δ→ B2 → . . .→ Bn−1 fn,δ→ Bn → . . .

a π-jet sequence, we can consider the sequence

R
f̂ ,δ→ B̂

f̂1,δ→ B̂1 f̂2,δ→ B̂2 → . . .→ B̂n−1 f̂n,δ→ B̂n → . . .

where each algebra B̂i is the π-adic completion of Bi, f̂ i is the extension of f i

to the π-adic completion, and δ is extended to the π-adic completions. Then
this π-adically complete sequence satisfies the property that δ ◦ f̂n−1 = f̂n ◦ δ
and a similar universality property in which the condition ’any R-algebra C’
is changed to the condition ’any π-adically complete R-algebra C’. We call
such a sequence the π-jet formal sequence and note that π-jet formal sequences
behave well with respect to localization, namely (B̂n)t ' (B̂t)

n for t ∈ B.
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The existence of π-jet formal sequences allow us to construct for any scheme
of finite type X/R a sequence of π formal schemes

. . .→ Xn fn

→ Xn−1 → . . .→ X1 f→ X0 = X̂

such that for any open affine subset U ⊂ X, the sequence

R→ OX0(U) → OX̂1(f
−1(U)) → . . .

is a π-jet formal sequence. We define the nth order π-jet space to be the π-
formal scheme Xn. From now on we will apply on occasion a slight abuse of
notation and use OX̂n for both the structure sheaf of X̂n and the appropriate

direct image sheaf on X̂ i for i < n. Furthermore when the context is clear
we will drop the subscripts completely and denote the appropriate structure
sheaf by O. We define X∞ to be the π-adic completion of the inverse limit of
the π-jet spaces, namely X∞ = inv limXn. Note that in the affine case where
X = SpecB for B = R[T ]/I, the formal scheme X∞ is simply Spf B∞ where
B∞ = R[T, T ′, T ′′, . . . , T (n), . . .]/(I, I ′, . . . , I(n), . . .). We define the k-scheme
Xn

0 to be Xn ⊗ k for any integer n and in turn define the scheme X∞
0 as the

k-scheme inv limXn
0 .

The universality property allows us to construct maps

∇n : X(R) → Xn(R)

where X(R) = Hom(SpecR,X) and Xn(R) = Hom(Spf R,Xn). For any
P ∈ X(R), there is a π-jet formal sequence of the ring of regular functions in
a neighborhood of P . We note that δ extends to a π-difference operator from
the ring of regular functions in a neighborhood of P to R. Then by inductively
applying the universality property to the π-jet formal sequence of the ring of
regular functions we get an R valued point in Xn. This construction extends
to ∇∞ : X(R) → X∞(R), the projective limit of these maps. The composition
of ∇n with the canonical reduction map from R to k gives us a map

∇n
0 : X(R) → Xn(R) → Xn

0 (k).

If we pass to the projective limit of the maps ∇n
0 we have ∇∞

0 : X(R) →
X∞

0 (k). In the case of X = A1, the affine line, the nth order π-jet space is
Xn = Spf R[T, T ′, . . . T (n)], ∇∞ can be described as a map from R → RN

that takes

a 7→ (a, δa = a′, δ2a = a′′, a′′′, . . .)

and if pr : R→ k is the canonical projection map, then ∇∞
0 takes

a 7→ (pr(a), pr(a′), pr(a′′), pr(a′′′), . . .).



6 CHRIS HURLBURT

Proposition 2.2. Let m be the order of φ, the smallest integer such that
φm(x) = x. Suppose X = A1. Then there exist linear polynomials Pi ∈
R[x0, ..., xm−1] such the map ∇∞ takes

a 7→ (a, a′, a′′, . . . , a(m−1), P1(a, a
′, a′′, . . . , a(m−1)), P2(a, a

′, a′′, . . . , a(m−1)), . . .).

Proof. Let x ∈ R. Then

φ(x) = x+ πx′,

φ2(x) = x+ (π + φ(π))x′ + (πφ(π))x′′,

and by induction

φn(x) = x+ S1nx
′ + S2nx

′′ + . . .+ Snnx
(n)

where Sjk is the symmetric polynomial on π, φ(π), . . . , φk−1(π) with each term
in Sjk of degree j and such that Sjk is of degree one in φi(π) for 0 ≤ i < k. So

φm(x) = x = x+ S1mx
′ + S2mx

′′ + . . .+ Smmx
(m)

meaning S1mx
′ + S2mx

′′ + . . .+ Smmx
(m) = 0. Furthermore φ(Sim) = Sim and

so applying δ to this equation we have

S1mx
(i+1) + S2mx

(i+2) + . . .+ Smmx
(i+m) = 0

for all i ≥ 0. It is also important to note that Smm divides Sim for 1 ≤ i ≤ m.
We can now construct the Pi inductively. Let

P1(x0, ..., xm−1) =

(
−1

Smm

)(
S1mx1 + S2mx2 + . . .+ Sm−1,mxm−1

)
.

Then let

P2(x0, ..., xm−1) =

(
−1

Smm

)(
S1mx2+. . .+Sm−2,mxm−1+Sm−1,mP1(x0, ..., xm−1)

)
and

P3(x0, ..., xm−1) =

(
−1

Smm

)(
S1mx3+. . .+Sm−2,mP1(x0, ..., xm−1)+Sm−1,mP2(x0, ..., xm−1)

)
.

In general using the fact that

Smmx
(m+i) = −

(
S1mx

(i+1) + S2mx
(i+2) + . . .+ Sm−1,mx

(i+m−1)
)
,

we can continue in this fashion to construct polynomials Pi such that

Pi(x, x
′, x′′, . . . , x(m−1)) = x(m+i−1).

Since substituting a linear polynomial in for a linear term gives a linear poly-
nomial, all of the Pis are linear. �

From now on Sjk will be the symmetric polynomial on π, φ(π), . . . , φk−1(π)
with each term in Sjk of degree j and such that Sjk is of degree one in φi(π)
for 0 ≤ i < k.
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Corollary 2.3. Let m be the order of φ, the smallest integer such that φm(x) =
x. Suppose X = An. Then there exist linear polynomials Pi ∈ R[x0, ..., xm−1]
such the map ∇∞ takes

a 7→ (a, a′, a′′, . . . , a(m−1), P1(a, a
′, a′′, . . . , a(m−1)), P2(a, a

′, a′′, . . . , a(m−1)), . . .)

where the Pi are regarded as linear transformations taking n-tuples to n-tuples.

Remark 2.4. Note that unlike with p-derivations, the map ∇∞
0 : X(R) →

X∞
0 (k) is distinctly not bijective.

The π-jet space construction has a local product property like p-jet spaces.
To see this we note first the following proposition and lemma that mirror
similar statements found in [2] and [4]. Both the proposition and lemma can
be proved using the same techniques found in [2] and also present in [4]. For
this reason only the proof of the lemma will even be mentioned since it requires
a very minor adjustment.

Lemma 2.5. Let A be an R-algebra, u : A → B a finitely generated étale
A-algebra, and v : B → C a ring homomorphism into a π-adically complete
ring C. Then any π-difference operator of v ◦u lifts uniquely to a π-difference
operator of v.

Proof. This is easily done using an identical proof structure to the proof found
in [2]. The ring W π

2 (C) is replace by the ring V2(C) ' C[t]/(t2− πt) and then
the argument in [2] applies. �

Proposition 2.6. Let u : R[x] → B be an étale morphism of finite type where
x is a finite family of indeterminates. Let x′, x′′, . . . , x(r) be families of new
indeterminates indexed by the same set as x. Then the natural morphism

B[x′, x′′, . . . , x(r)] → B̂n

that sends x(i) to δi(u(x)) is an isomorphism.

From these we conclude the local product property.

Corollary 2.7. (Local Product Property) Suppose X/R is smooth scheme of
finite type and relative dimension g. Then each point in X has an open neigh-
borhood U such that the π-jet spaces of U have the product decomposition

Un ' Û×̂Âgn

as π-formal schemes.

Further geometric properties of π-jet spaces are as follows. In the cases
where the property is analogous to the same property for p-jet spaces and the
property can be proved with at most minor changes to the proof given for
p-jet spaces, we refer the reader to the appropriate reference. The following
technical lemma while not completely analogous, is necessary to the proof the
proposition immediately following.
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Lemma 2.8. Suppose T is a tuple of variables. For F ∈ R[T, T ′, . . . , T (n)]

φ

(
∂F

∂T
(n)
i

)
=

∂F ′

∂T
(n+1)
i

.

Proof. It is enough to check F = axm where x = T
(n)
i and the gcd(a, x) =

1 since π-difference operators are additive. Computing the left side of the
formula,

φ

(
∂F

∂T
(n)
i

)
= φ

(
∂F

∂x

)
= φ

(
amxm−1

)
= φ(a)φ(m)φ(x)m−1 = φ(a)m(x+πx′)m−1.

Applying δ to F , we have F ′ = xmδ(a) + δ(xm)(a+ πδa) or

F ′ = xmδa+ φ(a)

(
(x+ πx′)m − xm

π

)
.

So

∂F ′

∂x′
=
φ(a)

π
(x+ πx′)m−1mπ = φ

(
∂F

∂T
(n)
i

)
.

�

With this technical lemma, the following proposition can be proved in the
same fashion as Proposition 2.2 in [5].

Proposition 2.9. Suppose X/R is smooth along X0. Then the morphisms
Xn → Xn−1 are smooth in the sense that they are locally obtained as π-adic
completions of smooth morphisms of schemes.

With 2.9, the following lemma follows directly from a similar proof to that
given in [5] for Lemma 1.6 with W 2(B) replaced by V 2(B) ' B[t]/(t2 − πt).
While this is certainly in some sense just a variant of lemma 2.5, we include it
here for parallelism purposes so that the proof for proposition 2.11 follows [5].

Lemma 2.10. Suppose X/R is smooth along X0. Let U be an open affine

subset of X and let B = OX(U) and f̂n : B̂n−1 → B̂n part of the π-jet formal

sequence. Then for any m ≥ 1, the natural projection pr : B̂n−1 → Bn−1/πm

factors through f̂n.

This in turn is sufficient for the following proposition. First we recall that for
X/R a smooth scheme of finite type over R, the tangent bundle of X0 denoted
by TX0 → X0 is simply Spec (S(ΩX0/k)). More generally the relative tangent
bundle of Xn−1

0 → Xn−2
0 is T (Xn−1

0 /Xn−2
0 ) := Spec (S(ΩXn−1

0 /Xn−2
0

)) → Xn−1
0 .
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Proposition 2.11. Suppose X/R is smooth along X0. Then for n ≥ 1, Xn
0 →

Xn−1
0 is a (Zariski locally trivial) principal homogenous space of the relative

tangent bundle T (Xn−1
0 /Xn−2

0 ) → Xn−1
0 . In addition if X/R is a group scheme

then ker(Xn
0 → Xn−1

0 ) is a vector group for all positive integers n.

In the case of n = 1, this proposition means that X1
0 → X0 is a (Zariski lo-

cally trivial) principal homogeneous space for the tangent bundle ofX0 denoted
by TX0 → X0. As such it has an associated cohomology class in H1(X0, TX0).
In particular this cohomology class is computed explicitly as follows for X/R.
Let {Ui} be an open affine cover of X0 and for each i, let δi be the π-difference
operator lifting δ on Ui. The cohomology class is the collection of differ-
ences (δi − δj) modulo π for i < j which is a class in Ȟ1(X0, TX0). Note
that modulo π, π-difference operators are derivations. It is important to note
that this cohomology class coincides exactly with the Kodaira-Spencer class
encountered in classical deformation theory. Therefore saying X/R has a non-
trivial Kodaira-Spencer class is equivalent to saying that the cohomology class
in H1(X0, TX0) associated to the principal homogenous space X1

0 → X0 for
TX0 → X0 is non-trivial. In the particular case of curves, this means the
following.

Proposition 2.12. Let X/R be a smooth projective curve whose Kodaira-
Spencer class is non-trivial. Then Xn

0 is affine for n ≥ 1.

Proof. First consider the case n = 1. The cohomology class in H1(X0, TX0)
associated to the principal homogenous space X1

0 → X0 for TX0 → X0 is non-
zero. At this point the proof of Proposition 1.10 [5] applies mutatis mutandi.
Therefore X1

0 is affine. However, if X1
0 is affine, if follows by induction that

Xn
0 is affine for n ≥ 1. �

3. δ-formal functions and δ-characters for δ a π-difference
operator

The definition of δ-formal functions in the case of π-difference operators is
analogous to the same definition for p-derivations. Namely

Definition 3.1. Let X/R be a scheme of finite type and δ : R → R a fixed
π-difference operator. An R-valued function ϕ : X(R) → R will be called a
δ-formal function of order ≤ r on X(R) if for any point in X(R) there is an
open affine neighborhood U ⊂ X and a closed embedding t : U → AN with
N ≥ 1 such that ϕ can be written as

ϕ(P ) = Φ
(
t(P ), t(P )′, . . . , t(P )(r)

)
for P ∈ U(R) and Φ an element in R[x, x′, . . . x(r) ]̂ with each x(i) an N -tuple
of indeterminates.
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Let Or(X) be the ring of all δ-formal functions of order ≤ r on X(R) and
let O∞(X) be the ring formed by the set of all δ-formal functions. There is a
natural map O(Xr) → Or(X) and hence O(X∞) → O∞(X). Explicitly, let
f ∈ O(Xr). Then for each P ∈ X(R), ∇(P ) ∈ Xr(R) = Hom(Spf R,Xn)
has a corresponding ring homomorphism O(Xr) → R that takes f to some

value in R. The δ-formal function f̂ : X(R) → R is the function that takes P

to this value. So for example in the case when X/R is affine f̂(P ) = f(∇(P )).
By its construction, this map is automatically surjective. However, for r ≥ m
where m is the smallest integer such that φm is the identity function, this map
is never injective. In fact as we shall see all δ-formal functions are equivalent
to a δ-formal function of order less than m.

Lemma 3.2. Let m be the smallest integer such that φm is the identity func-
tion. Then O∞(X) is the image of O(Xm−1) under the natural map O(Xm−1) →
Om−1(X). Namely any δ-formal function is of order ≤ m− 1.

Proof. Since this is an affine question, we may assume that X = SpecR[T ]/I
for T and N -tuple and that Y = AN . Let r ≥ m. Define ψ# : R[T, . . . , T (r)] →
R[T, . . . , T (m−1)] to be the map given by T (i) 7→ T (i) for i ≤ m − 1 and
T (i) 7→ Pi−m+1(T, T

′, T ′′, . . . , T (m−1)) for i > m−1 where Pi−m+1 are the linear
polynomials in corollary 2.3. Then ψ# defines a map ψ : Y m−1 → Y r such
that ∇r(P ) = ψ(∇m−1(P )) for all P ∈ Y (R).

Let ϕ : X(R) → R be a δ-formal function of degree r. Then there exists

f ∈ Or(X) such that f̂ = ϕ. Let t : X → Y be the natural closed embedding
which lifts to a closed embedding of Xr → Y r. Let F ∈ O(Y r) be in the
preimage of f under the ring map O(Y r) → O(Xr) associated to the closed
embedding. Then for P ∈ X(R),

ϕ(P ) = f̂(P ) = F (∇r(t(P ))) = F (ψ ◦ ∇m−1(t(P ))) = ψ#(F (∇m−1(t(P )))).

Let g = ψ#(F ). Then g ∈ O(Y (m−1)) and ϕ(P ) = g(∇m−1(t(P ))) meaning
the order of ϕ is ≤ m− 1. Finally if g∗ is the image of g under the ring map
O(Y m−1) → O(Xm−1) associated to the closed embedding, then ϕ = ĝ∗. �

Corollary 3.3. If φ is the identity function, then O∞(X) ' O(X̂).

For the rest of this section we assume G is a smooth commutative group
scheme of finite type over R. Note that as in the case of jet spaces constructed
with p-derivations, the nth π-jet space of a group scheme G/R is a π-formal
group scheme Gn/R. We can now define additive δ-characters for G(R).

Definition 3.4. Suppose G/R is a smooth commutative group scheme of
finite type and δ a fixed π-difference operator. A δ-character for G(R) is a
δ-formal function ψ : G(R) → R = Ga(R) which is also an additive group
homomorphism where Ga is the one-dimensional additive group over R.
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A δ-character has an order ≤ r if the δ-formal function has order ≤ r. Let
Xr(G) be the group of all δ-characters of order ≤ r and let X∞(G) be the group
of all δ-characters. Then by lemma 3.2, all δ-characters are of order ≤ m− 1
where m is the smallest integer such that φm is the identity function. Also we
can identify Xr(G) with Hom(Gn, Ĝa) where Hom refers to homomorphisms
of group schemes. Using this identification we first describe δ-characters for
Ga. Then we consider δ-characters for G/R.

For any G/R a smooth scheme of finite type and relative dimension g fix
a point ρ ∈ G(R), ρ : SpecR → G. Let P,Q ∈ G be the image under ρ of
the generic point and closed point respectively. Let x be a regular system of
parameters of OG,P which is contained in OG,Q. If q is the ideal of Q, then the
g-tuple x provides inclusions R[x] ⊂ OG,Q ⊂ R[[x]] where R[[x]] is identified
with the completion of OG,Q along q. Denote also by Q the image of the
closed point under ∇nρ : Spf R → Gn. Then the q-completion of OGn,Q is
identified with R[[x, x′, . . . , x(n)]] by the local product property. Furthermore
if the closed fiber G0/k is connected, the map On(G) → R[[x, x′, . . . , x(n)]] is
injective.

Proposition 3.5. Let m be the smallest integer such that φm is the identity
function on R. Then X∞(Ga) is a finitely generated free R-module with basis
{φ0, φ1, . . . , φm−1}.

Proof. Let ψ ∈ X∞(Ga). Then by lemma 3.2, ψ ∈ Xm−1(Ga) and so we can
identify ψ with an element also denoted by ψ ∈ R[[x, x′, . . . , x(m−1)]]. Con-
sider the K-algebra isomorphism σ : K[[y0, . . . , ym−1]] → R[[x, x′, . . . , x(m−1)]]
defined by

σ(y0) =
x

Sm−1,m−1

σ(y1) =
φ(x)

Sm−1,m−1

=
1

Sm−1,m−1

(
x+ S11x

′)
σ(y2) =

φ2(x)

Sm−1,m−1

=
1

Sm−1,m−1

(
x+ S12x

′ + S22x
′′)

...

σ(ym−1) =
φm−1(x)

Sm−1,m−1

=
1

Sm−1,m−1

(
x+ S1,m−1x

′ + . . .+ Sm−1,m−1x
(m−1)

)
It follows that σ−1(ψ) is additive in y0, . . . , ym−1 and therefore ψ =

∑m−1
i=0 λiφ

i

for λi ∈ K. Then the coefficient of x is 1
Sm−1,m−1

∑m−1
i=0 λi, the coefficient of x′ is

1
Sm−1,m−1

∑m−1
i=1 S1iλi, the coefficient of x′′ is 1

Sm−1,m−1

∑m−1
i=2 S2iλi, etc. Starting

with the coefficient of xm−1 which is in R and is λm−1 we have λm−1 ∈ R. Next



12 CHRIS HURLBURT

φm−2(π) times the coefficient of xm−2 is in R and is λm−2+ φm−2(π)Sm−2,m−1

Sm−1,m−1
λm−1

meaning λm−2 ∈ R. Proceeding in a similar fashion it follows that λi ∈ R for
all 0 ≤ i ≤ m − 1. Therefore ψ is a linear combination of {φ0, φ1, . . . , φm−1}
over R. By the linear independence of Galois automorphisms, all such linear
combinations are non-trivial δ-characters. �

Remarkably we can now use much of the machinery found in Section 2 of [2]
to show that for any commutative G/R, the set of δ-characters for G/R is a
finitely generated R-module. To use this machinery let F be a g-dimensional
formal group defined over R. Let F (x1, x2) ∈ R[[x1, x2]]

g be the g-dimensional
formal group law of F where x1 and x2 are g-tuples. Then π−nF (πnx1, π

nx2)

is the formal group law of a g-dimensional π-formal group on Âg which we will
denote by F {n} and is referred to as a twist of F . The map of F to F {n}
is a functor from formal group laws to π-formal groups and so if F1 and F2

define the same local formal group, then F1 {n} and F2 {n} are isomorphic
π-formal groups. The proof of the following proposition follows the proof of
Proposition 2.2 in [2].

Proposition 3.6. Let G/R be a smooth group scheme of finite type and let F
be any formal group associated to the local formal group FG. Let F [x1, x2] be
the g-dimensional group law of F and let F φn

[x1, x2] be the formal group law
obtained by applying φn to the coefficients of F . Denote by Fφn

the formal
group associated to F φn

[x1, x2]. Then the kernel of Gn → Gn−1 is isomorphic
as a π-formal group to the twist Fφn {n} of Fφn

.

Proof. This is easily done using an identical proof structure to that of Propsi-
tion 2.2 in [2] because of the many similarities between π-difference operators
and p-derivations. It is necessary to replace p-derivations with π-difference
operators and that ∂c : R[x, x′, . . . , x(n−1)] → C is defined by the formula

∂cf = (δh)(0, . . . , 0, c) =
1

π

(
hφ(0, . . . , 0, πc)− h(0, . . . , 0, 0)

)
for h ∈ R[x, x′, . . . , x(n−1)] where C is as in the proof of Proposition 2.2 and
hφ is the polynomial obtained by applying φ to the coefficients of h. �

Next just as in section 2.7 of [2], if G/R is a smooth commutative group
scheme of finite type of relative dimension g, we have a morphism of π-formal

groups u : Ĝa

g
→ Ĝ such that the induced map u : Rg → G(R) is injective.

With this map we can prove the following theorem.

Theorem 3.7. Let G/R be a smooth commutative group scheme of finite type
and relative dimension g. Then X∞(G) is a finitely generated torsion free
R-module of rank ≤ mg where m is the smallest integer such that φm is the
identity function on R.
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Proof. The morphism u induces morphisms of π-formal groups between π-jet
spaces (Gg

a)
n → Gn. If we apply the functor Hom(−, Ĝa) to these morphisms

we get morphisms u∗ : Xn(G) → Xn(Gg
a) which are injective because ψ ∈

X∞(G) vanishes on G(πiR) only if ψ = 0. In particular u∗(X∞(G)) is a
submodule of X∞(Gg

a) which by proposition 3.5 is a finitely generated free
R-module of rank mg. �

4

An obvious application of arithmetic difference geometry is to provide quan-
titative bounds for #(X(R)∩J(R)tors where X/R is a smooth projective curve
of genus g ≥ 2 and J/R is the Jacobian ofX. This has been done quite success-
fully using p-derivations and similar techniques work with π-difference opera-
tors. There are some key differences in the results though. With π-difference
operators, it is necessary that X/R have a non-trivial Kodaira-Spencer class
and the resulting bound is

#(X(R) ∩ J(R)tors) ≤ p(3+N)g(3g)[8g − 2]g!

where N is the smallest integer such that ν(p)
pN+1−pN < 1. The requirement that

X/R have a non-trivial Kodaira-Spencer class means that ν(p) > 1. However,
a special case of a theorem of Coleman is that if X is a curve of genus g
over Qp with good reduction and p > 2g, then X ∩ Jtors is unramified, i.e.,
contained in J(Qp

unr)tors [10],[7]. As a consequence even though this bound is
an improvement over the bound attained using p-derivations for small values
of e, for p > 2g it cannot be used to bound X(Qp) ∩ Jtors(Qp).

For any smooth projective curve X/R we will use the notation J/R to refer
to the Jacobian of X. The letter Γ will refer to the set of torsion points,
J(R)tors. Our convention will be to write J additively, and so by pJ we simply
mean the image under the map that adds together p occurrences of a point
in J . The following proposition is proved as a claim in the proof of Theorem
1.11 in [5] and then improved in a remark in the introduction of [1].

Proposition 4.1. Let J be the Jacobian of a smooth projective curve X/R of
genus g at least two. Let Γ = J(R)tors. Then the number of points in Γ/pΓ is
at most pg.

Proof. On p. 356 of [5], Buium proves the claim that the number of points in
Γ/pΓ is at most p2g. In a note on p. 4534 of [1], Boxall and Grant observe
that in fact the number of points in Γ/pΓ is at most pg because of the Weil
pairing. �

The next proposition is a well known fact about formal groups. For the
convenience of the reader we sketch a proof.
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Proposition 4.2. Let R be a complete discrete valuation ring whose maximal
ideal is generated by π with valuation ν and residue field of characteristic p.
Let F be a g-dimensional formal group defined over R. If x ∈ F(πR) is non-
zero element such that [pn](x) = 0 and [pn−1](x) 6= 0 namely an element of
order pn, then

ν(xj) ≤
ν(p)

pn − pn−1

where j is the index between one and g such that ν(xj) = min{ν(xi)|i =
1, . . . g}.

Proof. Let F (X, Y ) be the g-dimensional formal group law of F and let [l] :
F → F be the inductively defined homomorphism of formal groups for k an
integer. Then

[p](T ) =
(
pf1(T ) + h1(T

p
1 , . . . , T

p
g ), . . . , pfg(T ) + hg(T

p
1 , . . . , T

p
g )
)

where fi and hi are power series in g-variables and fi(0) = 0, hi(0) = 0. We
use the notation [l]i to denote the ith component of the homomorphism [l] and
the notation T k to mean (T k

1 , . . . , T
k
g ). Then

[pk]i(T ) = pkh̄i,k(T ) + pk−1h̄i,k−1(T
p) + . . .+ h̄i,0(T

pk

)

where each of the h̄i,j are power series in g variables such that h̄i,j(0) = 0.
Let x ∈ F(πR) be of order pn. Fix j to be the index between one and

g such that ν(xj) = min{ν(xi)|i = 1, . . . g}. Then ν(xj) ≤ ν(p)/(p − 1), so
ν([p]i(x)) ≥ pν(xj) and ν([pk]i(x)) ≥ pkν(xj) for any i between one and g.
The order of x implies

0 = [p]i([p
n−1](x)) = pfi([p

n−1(x)) + hi(([p
g−1](x))p)

and so

ν
(
p [pn−1]i(x)

)
≥ ν

(
([pn−1]i(x))

p
)
.

Hence ν([pg−1]i(x)) ≤ ν(p)
p−1

and so pg−1ν(xj) ≤ ν(p)
p−1

. �

Proposition 4.3. Let J be the Jacobian of a smooth projective curve X/R of
genus g. Let Γ = J(R)tors. Then the order of the kernel of the reduction map
from J(R) to J0(k) restricted to J(R)tors is bounded by pNg where N is the
smallest integer such that

ν(p)

pN+1 − pN
< 1.

Proof. The kernel of the reduction map from J(R) → J0(k) is isomorphic to
a group F(πR) where F is a g-dimensional formal group defined over R. If



GEOMETRY OF ARITHMETIC DIFFERENCE OPERATORS 15

x ∈ F(πR) is non-zero element such that [pn](x) = 0 and [pn−1](x) 6= 0 namely
an element of order pn, then

ν(xj) ≤
ν(p)

pn − pn−1

where j is the index between one and g such that ν(xj) = min{ν(xi)|i =
1, . . . g}. However, ν(xj) ≥ 1 and so the maximum order an element of finite

order can have is pN where N is the smallest integer such that ν(p)
pN+1−pN < 1.

Lastly we note that for any abelian variety, the kernel of the multiplication by
pN map is bounded by pNg [9]. �

Remark 4.4. If ν(p) < p− 1, then the reduction map is injective on J(R)tors.

With the propositions in this section and proposition 2.12 it is straightfor-
ward to prove the following theorem using the arguments found in [5], [6].

Theorem 4.5. Let X/R be a smooth projective curve of genus g ≥ 2 with an
R rational point and a non-trivial Kodaira-Spencer class. Then

#(X(R) ∩ Γ) ≤ p(3+N)g(3g)[8g − 2]g!

where Γ = J(R)tors and N is the smallest integer such that ν(p)
pN+1−pN < 1.

Proof. The R rational point of X gives a natural embedding of X into J
that extends to a natural embedding of α : X0 → J0. We regard X0 as a
closed subvariety of J0 via this embedding and note that this extends to an
inclusion of X1

0 in J1
0 . The composition of the natural mapping J1

0 (k) → J0(k)
with ∇1

0 : J(R) → J1
0 (k) is simply the reduction map J(R) → J0(k) and

consequently by Proposition 4.3 the restriction of ∇1
0 to Γ has kernel of order

at most pNg where ν(p)
pN+1−pN < 1.

Let B = pJ1
0 . Then the projection B → J0 is naturally an isogeny whose

degree is at most p2g. There is a natural map from J1
0 (k) → J1

0 (k)/B(k) under
which the image of ∇1

0(Γ) can be at most pg by Proposition 4.1. Therefore

∇1
0(X(R) ∩ Γ) ⊂ X1

0 (k) ∩
[
∪p2g

i=1(B + bi)
]

for b1, b2, . . . , bp2g ∈ J1
0 meaning

#(X(R) ∩ Γ) ≤ pNg

p2g∑
i=1

#
[
X1

0 ∩ (B + bi)
]
.

As a translate of an abelian subvariety, B + bi is complete. By proposition
2.12, X1

0 is affine. These both are closed subvarieties of J1
0 and as such their

intersection must be finite. It remains to estimate the cardinality of these
intersections.
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To do this we proceed exactly as in the proof of Theorem 1.11 of [5] adjusting
as follows. Recall that X1

0 and J1
0 are Zariski locally trivial principal homoge-

nous spaces of the tangent bundles of X0 and J0 respectively. Therefore the
extensions corresponding to X1

0 and J1
0 are

0 → OX0 → EX → ωX0 → 0

and
0 → OX0 → EJ → ΩJ0/k → 0

respectively. The next adjustment is that in our situation the self intersection(
OP(EX)(1) · OP(EX)(1)

)
P(EX)

= degωX0 = 2g − 2

meaning that
degH P(EX) = 2g − 2 + 6g = 8g − 2

where H = π∗JOJ0(3Θ)⊗OP(EJ )(1) for Θ the theta divisor on J0. This in turn
means

#
[
X1

0 ∩ (B + bi)
]
≤ (8g − 2)(pg · 3g · g!)

for each 1 ≤ i ≤ p2g. The immediate consequence is

#(X(R) ∩ Γ) ≤ pNgp2g(8g − 2)(pg · 3g · g!).
�
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