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Abstract. This paper generalizes Elkies’ construction of error-correcting nonlinear codes found in [E].

The generalization produces a precise average code size over codes in the new construction. The result

is a larger family of codes with similar transmission rates and error detection rates to the nonlinear

codes found in [E]. Moreover, we exhibit a connection between these nonlinear codes and solutions to

simple homogeneous linear equations defined over the function field of a curve.

Introduction

In this paper we give a generalization of Elkies’ construction of error-correcting nonlinear codes

found in [E]. Elkies’ construction is as follows. Let C be a curve over a finite field Fq and let D

be a divisor of degree zero on C. Elkies constructs a code by evaluating at the rational points on

C all rational functions of degree less than a fixed bound in the line bundle associated to D. The

resulting code has alphabet Fq ∪ {∞}. For a large class of curves these codes are more efficient

than Goppa codes over the same curve with the same designed minimal distance. To determine

effiency, i.e., the transmission rate plus error detection rate of his codes, Elkies must estimate the

average number of rational functions of bounded degree in the line bundle.

Our new approach uses methods and ideas from Diophantine geometry and adelic geometry of

numbers to construct codes. Whereas Elkies works with a curve C and divisor D of degree zero, we

work with the corresponding function field K and a matrix B ∈ GL2(KA), where KA is the adele

ring of K. This matrix gives rise to a twisted height on projective space over K. We consider all

points in projective space over K of twisted height less than a fixed bound, and we construct our

code by evaluating these points at all places of degree one. Elkies’ codes are a proper subset of the

set of codes obtained from our construction. Moreover, by using our larger collection of codes, we
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are able to establish quite precisely an average transmission rate. Our designed minimal distance

is the same as in Elkies’ construction; hence Elkies’ arguments for higher efficiency than Goppa

codes apply equally well to this larger collection of codes.

Another benefit of our construction is the ability to relate each code to particular solutions of

a homogeneous linear equation defined over K. In general, determining the points in projective

space of twisted height less than a fixed bound corresponds to finding the solutions of height less

than a fixed bound to a system of homogeneous linear equations. In our case each twisted height

from a matrix B ∈ GL2(KA) corresponds to a single homogeneous linear equation. Through this

connection we are able to reformulate each of our codes in terms of the solution set to a homogeneous

linear equation.

This paper is structured as follows. The first section establishes our notation and recalls the

notion of twisted heights. In the next two sections we describe our construction of error-correcting

codes, prove lower bounds for the distance between codewords, and prove how many codewords we

get on average. The final section describes precisely how our codes arise from homogeneous linear

equations and ends with some concluding remarks on possibilities for further development.

1. Notation and Definitions

Throughout the remainder of this paper, K will be a fixed finitely generated extension of a finite

prime field Fp, of transcendence degree 1 over Fp. In other words, K will be a fixed finite algebraic

extension of Fp[T ], where T is transcendental over Fp. We denote the cardinality of the field of

constants by q. The field K corresponds to a nonsingular projective curve C over Fq. We let KA,

K×
A , M(K), and ζK denote the adele ring, idele group, set of places, and Dedekind zeta function of

K, respectively. Let J(K) denote the number of divisor classes of degree zero, i.e., the cardinality

of the jacobian of the curve C.

For each place v ∈ M(K), let Kv denote the completion of K at the place v and write ordv(x)

for the order of x ∈ Kv. Here ordv is normalized so that its image is Z ∪ {∞}. Let Ov denote

the maximal compact subring of Kv (the “v-adic integers”); then Ov consists of all x ∈ Kv with

ordv(x) ≥ 0, with the usual convention that ∞ > 0. The field of constants Fq consists of 0 together
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with all elements x ∈ K with ordv(x) = 0 at all places v. For x = (x1, . . . , xn) ∈ Kn
v we let

ordv(x) = min
1≤i≤n

{ordv(xi)}.

If a = (av) ∈ K×
A , we get a divisor

div(a) =
∑

v∈M(K)

ordv(av) · v.

The adelic modulus is defined by |a|A = q− deg div(a). If x = (xv) ∈ Kn
A is such that xv 6= 0 for all

places v, then we have a divisor

div(x) =
∑

v∈M(K)

ordv(xv) · v,

and an adelic length defined by

‖x‖A = q− deg div(x).

Note in particular that if x is a non-zero element of Kn, then we may view x via the usual diagonal

embedding as such a vector in Kn
A .

For A ∈ GLn(KA), we get the following twisted height on Kn \ {0}:

HA(x) = ‖A(x)‖A.

Note that div(aA(x)) = div(a) + div(A(x)) for any idele a. Thus

HaA(x) = |a|AHA(x). (0)

In particular, HA(ax) = HA(x) for any a ∈ K×. Thus, HA is really a function on projective

(n− 1)-space Pn−1(K). We let hA denote the additive height, i.e., hA(x) = logq HA(x). Using the

additive height, equation (0) becomes

haA(x) = hA(x)− deg div(a). (0’)



4 CHRIS HURLBURT AND JEFFREY LIN THUNDER

2. Codes

Choose an enumeration v1, . . . , vN of the places of degree 1. These places correspond to the

Fq-rational points on the curve C associated with K. Fix an A ∈ GL2(KA) of the form

A =
(

a b
0 1

)
. (1)

Then for any x ∈ K, we associate a codeword of N letters with alphabet Fq ∪ {∞} by setting the

i-th letter to be the residue in Fq of avix+ bvi if ordvi(avix+ bvi) ≥ 0, or ∞ if ordvi(avix+ bvi) < 0.

For a fixed parameter h, our code CA(h) will consist of the words associated to those x for which

hA(x, 1) ≤ h. We note that when A is a matrix of the form (1) where b = 0 and |a|A = 1, the

resulting code CA(h) is the code Elkies considers in [E] and denotes by Cdiv(a)(h). Thus, Elkies’

nonlinear codes are particular examples of our codes.

Lemma 1. Fix an A of the form (1) as above an A ∈ GL2(KA) of the form

A =
(

a b
0 1

)

and an h ∈ Z. Let x and y be distinct elements of K such that hA(x, 1), hA(y, 1) ≤ h. Then the

codewords associated to x and y have at least

N − 2h− deg div(a) = N − 2h− deg div(det(A))

coordinates which are distinct.

Proof. Let D1 = div
(
A(x, 1)

)
and D2 = div

(
A(y, 1)

)
. Note that both −D1 and −D2 are effective.

Let

D = div
(
A(x, 1)−A(y, 1)

)
= div(a(x− y)) = div(a) + div(x− y).

Write D as a difference of effective divisors: D = D+ −D−. Then

deg D = deg D+ − deg D− = deg div(a), (2)

since div(x− y) is a principal divisor.
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If v ∈ M(K) is in the support of both D1 and D2, then the coefficient at v of −D− is greater

than the sum of the coefficients of D1 and D2. For all other places, the coefficient at v of −D− is

at least the sum of the coefficients of D1 and D2. Thus,

−deg D− ≥ deg D1 + deg D2 + l, (3)

where l is the number of places in the support of both D1 and D2.

Consider the set of places of degree one where the coordinates of the codewords associated with

x and y match. For such a place v, either the corresponding letter is in Fq, implying that v is in the

support of D+, or the letter is ∞, implying that v is in the support of both D1 and D2. Hence, the

number of such places is no greater than deg D+ + l. We thus see by (2) and (3) that the number

of coordinates in the codewords associated to x and y which are distinct is at least

N − (deg D+ + l) = N − deg div(a)− deg D− − l

≥ N − deg div(a) + deg D1 + deg D2

= N − deg div(a)− hA(x, 1)− hA(y, 1)

≥ N − 2h− deg div(a).

Some remarks concerning this distance bound are in order. First, when deg div(a) = 0 we

recapture Elkies’ distance bound, N − 2h. Also, we obviously must have 2h + deg div(a) < N to

have an error correcting code. This puts an upper bound on how large the parameter h can be. As

a final remark, we clearly can’t have a distance bound larger than N itself, yet Lemma 1 seems to

imply this possibility if 2h + deg div(a) < 0. In fact, this can never occur. To see why, suppose x

and y are linearly independent elements of K2 and consider the element B of GL2(K) with columns

xtr and ytr. Call this matrix B. Then the columns of the product AB are simply the transposes

of A(x) and A(y). By Hadamard’s inequality, we see that

‖A(x)‖A · ‖A(y)‖A ≥ |det(AB)|A = |det(A)|A · |det(B)|A = |det(A)|A,

since div(det(B)) is a principal divisor. Thus,

hA(x) + hA(y) ≥ −deg div(det(A)) = −deg div(a)

for any two linearly independent x and y. In particular, if 2h < −deg div(a), then Lemma 1 is

inapplicable as there can be no two distinct (x, 1) and (y, 1) with hA(x, 1), hA(y, 1) ≤ h.
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3. Codes from Arbitrary Matrices and the Number of Codewords

Given a B ∈ GL2(KA), there is a norm-preserving U ∈ GL2(KA) such that UB is upper triangu-

lar. By norm-preserving, we mean that ‖Uv(xv)‖v = ‖xv‖v for all xv ∈ K2
v and all places v. (This

is equivalent to saying Uv(O2
v) = O2

v for all places v.) To see why this is so, we remark that one

can construct an upper triangular T ∈ GL2(KA) such that BT is norm-preserving; this is done via

an analog of Gram-Schmidt. Then T−1 is the desired upper-triangular element of GL2(KA). Say

the lower righthand corner entry of UB is c ∈ K×
A . Then c−1UB = A will be of the form (1). The

code we actually associate to B is the code obtained from A as described in the previous section.

Though A is not uniquely determined, we will show in Section 4 that any two such As produce

equivalent codes.

For a given B ∈ GL2(KA) and z ∈ Z, let N (B, z) denote the number of ξ ∈ P1(K) such that

hB(ξ) ≤ z. Alternately, N (B, z) is the number of one-dimensional subspaces Kx ⊂ K2 such that

deg div
(
B(x)

)
≥ −z.

Lemma 2. Let B ∈ GL2(KA) and z ∈ Z. Then

N (B, z) = N (Bγ, z) = N (UB, z)

for all γ ∈ GL2(K) and norm-preserving U ∈ GL2(KA). Also,

N (cB, z) = N (B, z + deg div(c))

for all c ∈ K×
A .

Proof. The first equality is clear since any γ ∈ GL2(K) gives a permutation of the one-dimensional

subspaces of K2, and the second equality follows directly from the definition of height and norm-

preserving. Finally, by equation (0’), hcB(x) = hB(x)− deg div(c) for all non-zero x ∈ K2 and all

c ∈ K×
A .

Lemma 3. Fix an h ∈ Z with 0 ≤ h < N/2 and a B ∈ GL2(KA) such that deg div(det(B)) = 2m

for m ∈ Z. Choose a non-zero x0 ∈ K2 with hB(x0) > N
2 −m and a γ ∈ GL2(K) with γ(1, 0) = x0.

Let c ∈ K×
A and let U ∈ GL2(KA) be norm-preserving such that cUBγ = A is a matrix of the form
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(1). Then the code CA(h − m − deg div(c)) has minimal distance at least N − 2h and exactly

N (B, h−m) codewords.

Proof. Since A = cUBγ, |det(U)|A = 1, and |det(γ)|A = 1,

deg div(det(A)) = deg div(det(cB)) = 2 deg div(c) + deg div(det(B)) = 2 deg div(c) + 2m.

By Lemma 1, a lower bound for the minimal distance is

N − 2(h−m− deg div(c))− deg div(det(A)) = N − 2h.

By equation (0’), the choice of γ, and the definition of norm-preserving,

hA(1, 0) = hcUBγ(1, 0) = hB(x0)− deg div(c)

≥ N

2
−m− deg div(c)

> h−m− deg div(c).

Thus, any ξ ∈ P1(K) with hA(ξ) ≤ h−m−deg div(c) has a representative of the form (x, 1) ∈ K2.

Whence, the number of codewords is

N (A, h−m− deg div(c)) = N (cUBγ, h−m− deg div(c))

= N (UBγ, h−m)

= N (Bγ, h−m)

= N (B, h−m).

In a similar manner, one can prove

Lemma 3’. Fix an h′ ∈ Z with 1/2 ≤ h′ < (N + 1)/2 and suppose B ∈ GL2(KA) is such that

deg div(det(B)) = 2m + 1 for m ∈ Z. Choose a non-zero x0 ∈ K2 with hB(x0) ≥ N−1
2 − m and

a γ ∈ GL2(K) with γ(1, 0) = x0. Let c ∈ K×
A and let U ∈ GL2(KA) be norm-preserving such that

cUBγ = A is of the form (1). Then the code CA(h′ − 1−m− deg div(c)) has minimal distance at

least N − 2h′ + 1 and exactly N (B, h′ − 1−m) codewords.

In order to establish the transmission rates of our codes, we need to estimate the quantities

N (B, h − m) and N (B, h − 1 − m) occurring in the above two lemmas. As indicated in the

introduction, what we will do is determine the average value (in a precise sense) of these quantities.
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Choose an a0 ∈ K×
A with deg div(a0) = 1 and let

P =
(

a0 0
0 1

)
.

Define

S =
∏
v

(Ov)2.

For x ∈ (KA)2 and m ∈ Z we define the “distance function”

χm(x) = inf
a∈K×

A

{|a|A : x ∈ aP−m(S)}.

Note that for x = (xv) of the type xv 6= 0 for all places v, χ0(x) = ‖x‖A. In particular, for non-zero

x ∈ K2 and B ∈ GL2(KA), we have χ0(B(x)) = HB(x). More generally, for all m ∈ Z we have

χm(B(x)) = HP mB(x). (4)

To ease the notation to follow, let G be the subgroup of GL2(KA) consisting of all those B with

|det(B)|A = 1 and let Γ be the discrete subgroup GL2(K). There is a Haar measure µ on G for

which µ(G/Γ) = 1 (see [T, §3]). Let T be the subgroup of Γ consisting of all upper triangular

matrices. One may view P1(K) as the factor group Γ/T .

Fix a parameter h ∈ Z and let

f(x) =


1 if x ≤ qh,
qh+1−x
qh+1−qh if qh ≤ x ≤ qh+1,

0 if x ≥ qh+1.

We note that by equation (4), we may view f ◦ χm(B∗) as a function on Γ/T . As shown on page

178 of [T], we have

∫
G/Γ

 ∑
ξ∈Γ/T

f
(
χm(Bξ)

) dµ(B) =
q2(1−g)+mJ(K)
(q − 1)ζK(2)

∑
z∈Z

q2zf(qz).

Note that this incorporates a correction to Lemma 1 of [T] in the function field case which should

read

κ
σn(gn/γn)
µn(Gn/Γn)

=
αn(S)h(K)

(1− q−n)(q − 1)ζK(n)
.
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A quick calculation gives us∫
G/Γ

 ∑
ξ∈Γ/T

f
(
χm(Bξ)

) dµ(B) =
q2(1−g+h)+mJ(K)

(1− q−2)(q − 1)ζK(2)
.

In view of (4) and the definition of f , we may rewrite this as∫
G/Γ

N (PmB, h)dµ(B) =
q2(1−g+h)+mJ(K)

(1− q−2)(q − 1)ζK(2)
. (5)

Since the coset PmG ⊂ GL2(KA) is the subset of those B with deg div(det(B)) = m, we have

the following interpretation of (5).

Lemma 4. Fix z,m ∈ Z. Then the mean value N̂ of N (B, z) over all B ∈ GL2(KA)/GL2(K)

with deg div(det(B)) = m satisfies

N̂ =
q2(1−g+z)+mJ(K)

(1− q−2)(q − 1)ζK(2)
.

Combining Lemma 4 with the Lemmas 3 and 3’ yields the following theorem.

Theorem. Fix an h ∈ Z with 0 ≤ h < N/2 and fix an even integer 2m. For every B ∈ GL2(KA)

with deg div(det(B)) = 2m we have associated codes as in Lemma 3. All these codes have minimal

distance at least N − 2h. Furthermore, the mean value over all such B (in the sense of Lemma 4)

of the number of codewords in such codes is exactly

q2(1−g+h)J(K)
(1− q−2)(q − 1)ζK(2)

.

Similarly fix an h′ ∈ Z with 1/2 ≤ h′ < (N + 1)/2 and fix an odd integer 2m + 1. For every

B ∈ GL2(KA) with deg div(det(B)) = 2m + 1 we have associated codes as in Lemma 3’. All these

codes have minimal distance at least N − 2h′+1. Furthermore, the mean value over all such B (in

the sense of Lemma 4) of the number of codewords in such codes is exactly

q2(1−g+h′)−1J(K)
(1− q−2)(q − 1)ζK(2)

.

In a manner analogous to the proof of Proposition 2.3.26 of [TV], it is a straightforward com-

putation to show that

logq

(
q2(1−g+h)J(K)

(1− q−2)(q − 1)ζK(2)

)
= 2h− g + N logq

(
q + 1

q

)
− o(g).
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This is valid for any curve, including any curve in an asymptotically optimal family of curves

(these are precisely the curves Elkies uses to construct his codes). This equation shows that codes

in this superset have the same number of codewords on average as Elkies’ nonlinear codes (cf. [E,

equation (9)]). Hence, Elkies’ two approaches (see [E,§1.3]) for comparing his nonlinear codes to

Goppa codes apply verbatim to comparing codes in this superset to Goppa codes.

4. Equivalent Codes

In this section we make some observations on the codes we get from Lemmas 3 and 3’ using the

same B ∈ GL2(KA), and how different Bs can give rise to the same codes. We first notice that

it suffices to look solely at B ∈ GL2(KA) with |det(B)|A = 1 or q for our codes. The following is

clear from equation (0’).

Lemma 5. Let B ∈ GL2(KA) suppose that c ∈ K×
A and U ∈ GL2(KA) is norm-preserving such

that cUB = A is of the form (1). Choose an idele a0 with |a0|A = q and let

m =
[
deg div(det(B))

2

]
, B′ = a−m

0 B.

(Here the brackets [ ] denote the greatest integer function.) Then |det(B′)|A = 1 or q, depending

on whether deg div(det(B)) is even or odd, respectively. Further, (am
0 c)UB′ = A and hB′(x) =

hB(x) + m for all non-zero x ∈ K2. In particular, the codes obtained from B in Lemma 3 or 3’

are exactly the codes obtained from B′.

We now consider the different possible codes one can get from a given B ∈ GL2(KA). Of course,

starting with such a B, there are many different norm-preserving matrices U and ideles c for which

cUB is of the form (1). Suppose c1U1B are c2U2B are two such choices. Then c−1
1 c2U2U

−1
1 is yet

another such matrix of the form (1). Let us write

c−1
1 c2U2U

−1
1 =

(
u1 u2

0 1

)
.

Since U2U
−1
1 is a norm-preserving upper triangular matrix, its lower diagonal entry, c1c

−1
2 , is an

idele with v-adic modulus 1 at all places v. Thus |c1,v|v = |c2,v|v for all v ∈ M(K). Since the

upper diagonal entry of U2U
−1
1 is also an idele with v-adic modulus 1 at all places v, we see that

|u1,v|v = 1 for all v ∈ M(K). Similarly, we see that |u2,v|v ≤ 1 for all v ∈ M(K).
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In summary, if CA(h−m− deg div(c)) and CA′(h−m− deg div(c′)) are two codes arising from

B ∈ GL2(KA) as in Lemma 3, then we have A′ = UA for some

U =
(

u1 u2

0 1

)
, |u1,v|v = 1 and |u2,v|v ≤ 1 all v ∈ M(K) (6)

and we have |cv|v = |c′v|v for all v ∈ M(K). Similarly, if CA(h−1−m−deg div(c)) and CA′(h−1−

m− deg div(c′)) are two codes arising from B ∈ GL2(KA) as in Lemma 3’, then we have A′ = UA

for U of the form (6) and |cv|v = |c′v|v for all v ∈ M(K).

For the following lemma we adopt the usual conventions regarding arithmetic with∞: ∞+g = ∞

for all g ∈ Fq and f∞ = ∞ for all f ∈ F×q .

Lemma 6. Suppose h ∈ Z and A ∈ GL2(KA) is of the form (1). If U ∈ GL2(KA) is of the form

(6) then there are f1, . . . , fN ∈ F×q and g1, . . . , gN ∈ Fq such that (x1, . . . , xN ) ∈ CA(h) if and only

if (x1f1 + g1, . . . , xNfN + gN ) ∈ CUA(h).

Conversely, if f1, . . . , fN ∈ F×q and g1, . . . , gN ∈ Fq, then there is a U ∈ GL2(KA) of the form

(6) such that (x1, . . . , xN ) ∈ CA(h) if and only if (x1f1 + g1, . . . , xNfN + gN ) ∈ CUA(h).

Proof. Suppose U is a matrix of the form (6). Set fi to be the residue of u1,vi
and gi to be the

residue of u2,vi for each i = 1, . . . , N . Then by construction, (x1, . . . , xN ) ∈ CA(h) if and only if

(x1f1 + g1, . . . , xNfN + gN ) ∈ CUA(h).

Conversely, suppose the fis and gis are given as above. Choose a u1 ∈ K×
A where the residue

of u1,vi is fi for each i = 1, . . . , N and u1,v = 1 for all other places v. Choose a u2 in a similar

manner using the gis. Then

U =
(

u1 u2

0 1

)
is of the form (6) and (x1, . . . , xN ) ∈ CA(h) if and only if (x1f1 + g1, . . . , xNfN + gN ) ∈ CUA(h).

5. Codes from Linear Equations and Final Remarks

We consider a single homogeneous linear equation in three variables with coefficients in K:

c ·Y = c1Y1 + c2Y2 + c3Y3 = 0, c ∈ K3 \ {0}. (7)

This equation defines a two-dimensional subspace of K3. Take a basis y1, y2 of this subspace, so

that any solution to (7) may be written uniquely as a linear combination of y1 and y2. We need a
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basis such that 2hI(y1) > N +hI(c), where I ∈ GL3(KA) denotes the identity. Given any non-zero

solution y = x1y1 + x2y2, we may take its height HI(y) as an element of K3. By [RT, Proposition

4.2] and [RT, Theorem 1.1], there is a B ∈ GL2(KA) satisfying

deg div(det(B)) = −hI(c) (8)

and

hI(x1y1 + x2y2) = hB(x1, x2) (9)

for all non-zero x ∈ K2.

This allows us to reformulate Lemmas 3 and 3’ from the standpoint of solutions to a homogeneous

linear equation.

Lemma 7. Fix an h ∈ Z with 0 ≤ h < N/2. Suppose c ∈ K3 \ {0} satisfies hI(c) = −2m for

m ∈ Z. Let y1, y2 is a basis for (7) with hI(y1) ≥ N
2 − m. Get a B ∈ GL2(KA) satisfying

conditions (8) and (9) and a matrix A = cUB of the form (1) where c ∈ K×
A and U ∈ GL2(KA) is

norm-preserving. Then CA(h − m − deg div(c)) is an error-correcting code with minimal distance

at least N − 2h. The number of codewords is exactly the number of one-dimensional subspaces Ky

of the solution space with hI(y) ≤ h−m.

Lemma 7’. Fix an h ∈ Z with 1/2 ≤ h < (N+1)/2. Suppose c ∈ K3\{0} satisfies hI(c) = −2m−1

for m ∈ Z. Let y1, y2 is a basis for (7) with hI(y1) ≥ N−1
2 − m. Get a B ∈ GL2(KA) satisfying

conditions (8) and (9) and a matrix A = cUB of the form (1) where c ∈ K×
A and U ∈ GL2(KA)

is norm-preserving. Then CA(h − 1 − m − deg div(c)) is an error-correcting code with minimal

distance at least N − 2h + 1. The number of codewords is exactly the number of one-dimensional

subspaces Ky of the solution space with hI(y) ≤ h− 1−m.

We said above that every homogeneous linear equation (7) gives rise to such a B ∈ GL2(KA). By

[T, Theorem 5], for any B ∈ GL2(KA) there is a c ∈ K×
A such that cB arises from such an equation.

Note how our choice of basis corresponds to choosing a representative B modulo GL2(K). Thus,

the codes in Lemmas 7 and 7’ are precisely the codes in Lemma 3 and 3’. In particular, Elkies’

nonlinear codes can be viewed as coming from linear equations of the form (7). Not only that, but
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“on average,” in the sense of Lemma 4, the codes generated by equations (7) with hI(c) even have

minimal distance at least N − 2h and

q2(1−g+h)J(K)
(1− q−2)(q − 1)ζK(2)

codewords. The equations where hI(c) is odd will give codes with minimal distance at least N −

2h + 1 and
q2(1−g+h)−1J(K)

(1− q−2)(q − 1)ζK(2)

codewords, on average.

We end with some final remarks. First, one could well ask if our mean value in Lemma 4 is

typical of B ∈ GL2(KA) or whether one can reasonably expect N (B, h) to be much larger or smaller

that the mean. One approach to this problem which has been carried out (to some extent) for the

field of rational numbers is to derive higher moments. To our knowledge, this has not been done

for function fields. We do have heuristic arguments which indicate that, indeed, the mean value is

quite typical.

Finally, for our transmission rate estimates we used only a special case of the machinery in [T];

specifically, we used the “convex body” S =
∏

v O2
v. The mean value (Lemma 4) can be computed

equally well for any “star convex” S. Perhaps one could construct codes via a different choice of S

which would be more efficient.
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